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Localisability in classical mechanics 
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Department of Theoretical Physics, Institute of Atomic Physics, Bucharest, Magurele, 
Romania 

Received 20 February 1990 

Abstract. A reasonable definition for the notion of localisability in classical mechanics is 
given. It could explain in a satisfactory way the properties of the relativistic photon and 
the fact that some relativistic systems predicted by Poincare invariance, such as tachyons, 
do not appear in Nature. 

1. Introduction 

In this paper we analyse the notion of localisability for classical systems, described in 
the framework of Hamiltonian formalism. 

The notion of localisability for elementary relativistic systems has appeared in the 
framework of quantum mechanics [ 1,2]. The idea is the following. It is assumed from 
the beginning that the elementary system is pointlike, so the configuration space is 
identical with the ‘physical’ space R3. Then, according to Wightman [2], the position 
observable is a projection valued measure based on R3. If one takes into account the 
relativistic invariance with respect to the Euclidean group SE(3), then it follows from, 
natural compatiblity conditions, that the mathematical objects describing localisability 
in quantum mechanics are the systems of imprimitivity (which can be analysed using 
Mackey’s theory). For recent developments see [3]. 

Here, we propose a natural definition for the notion of localisability in classical 
mechanics, using the framework of the Hamiltonian formalism. In fact, the basic 
motivation of the Hamiltonian formalism reposes on the observation that for a physical 
system with the configuration space Q, one has a natural symplectic manifold M E  
T*( Q)-the phase space-and the evolution is governed by a Hamiltonian vector field 
(see [4], the preview). One can say that such a system is localisable on Q: the ‘position’ 
of the system in the state (9, p )  E T*( Q) is q E Q. (Of course, it is implicitly assumed 
that one has a prescription by which one determines the point q E Q, by measurements 
performed in the ‘physical’ space R3.) 

On the other hand, one can abandon completely the requirement that the phase 
space M is a cotangent bundle to some configuration manifold Q, and one admits that 
the phase space can be any symplectic manifold. In this approach, an elementary 
relativistic system is, by definition, any homogeneous symplectic manifold for the 
symmetry group of the problem [5-91 and [lo, the footnote of p 1801. 

Our definition of localisability in the Hamiltonian formalism could be characterised 
as an attempt to preserve the original motivation for the introduction of the notion of 
phase space (an explained above). Loosely speaking, we propose that a reasonable 
phase space M must be fibred over a phase space of the type T*( Q); then the projection 
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on T*(Q) describes the configuration of the system (and the conjugated momenta), 
and the fibres describe the internal degrees of freedom, e.g. the spin. If the Euclidean 
group SE(3) acts on Q and on M, we have a natural compatibility condition which 
has a clear counterpart in the quantum mechanics analysis (compare axiom V p 848 
of [2] with definition 1 in section 2 of this paper). 

These conditions are of kinematical nature. We think that they must be supple- 
mented by another condition of dynamical nature. Suppose that the Hamiltonian H 
of the system ‘depends only on the variables (4,  p )  E T*( Q)’ (more precisely H factorises 
to T*( Q ) ) .  Then one can determine the time evolution of (4, p )  E T*( Q )  in two ways: 
working with the Hamiltonian H on the phase space M and projecting the integral 
curves of H on T*(Q) ,  or working directly on T*(Q)  with the factorised Hamiltonian. 
We think that it is reasonable to suppose that the two alternatives give the same result. 
We call this new condition strict localisability and we will admit that any physical 
system must be strictly localisable on some configuration space Q. 

It remains to choose the configuration space Q. One could take Q = R3 as in the 
analysis of Wightman; this possibility was explored previously [ 113. We think that the 
identification of the configuration space Q with the ‘physical’ space R3 is too restrictive. 
In fact, from the very beginning of the analytical mechanics it was admitted that these 
two objects can be different. 

Here we propose as admissible configuration spaces all Euclidean homogeneous 
manifolds. This hypothesis agrees with a previous suggestion [12, p 5841 made in the 
context of quantum mechanics. 

From the physical point of view the results which follow from these hypotheses 
are interesting. Although there are many Euclidean homogeneous manifolds, only two 
of them can be configuration spaces (in the strict sense) for the elementary relativistic 
systems with respect to the PoincarC group: R3 and SE(3)/SE(2). The first one can be 
a configuration space for non-zero mass systems (as in the analysis of Wightman). The 
second one can be a configuration space for a certain zero mass system; this agrees 
with the proposal from [12]. 

The physical interpretation of the configuration space SE(3)/SE(2) is not completely 
clear. A possible interpretation is based on a particular realisation of this homogeneous 
space as the manifold of bidimensional (oriented) planes in R3; then a system localised 
on such a configuration space could be imagined as a bidimensional object, e.g. a 
plane wave. Maybe this interpretation of the configuration space SE(3)/SE(2) is not 
completely satisfactory, and a better one can be found. In any case, the main physical 
significance of our result is the following: some hypothetical particles such as tachyons 
or particles of zero mass and infinite spin are not strictly localisable (according to our 
definition). This can perhaps explain why they are not found in Nature. 

To summarise, we propose to define an elementary relativistic system (for the 
Galilei or PoincarC group) as a homogeneous symplectic manifold M for the corre- 
sponding group, together with a configuration space Q. Also M and Q are connected 
by some natural compatibility conditions which have been presented above, and will 
be formulated in a rigorous fashion in section 2. Some necessary conditions for (strict) 
localisability, which will be needed are also given in section 2. In section 3 we give a 
complete analysis of this problem for the Poincar6 group. The analysis reduces to the 
tedious computation of some Poisson brackets, and to the integration of some nonlinear 
systems with partial differential equations. It is interesting to note that all the cases 
can be integrated completely. This seems to indicate that the results can be obtained 
in a more abstract fashion. We mention also that in the course of the proof we re-obtain 
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in a more natural way a number of formulae which have already appeared in the 
literature [ 13- 151. Besides new formulae connected with the new configuration space 
SE(3)/SE(2), we think that our point of view has the merit of stressing that the 
underlying structure for all these formulae is that of (strict) localisability. 

Let us comment on the connection between our results and other approaches in 
the literature. Our notion of localisability is closely related in spirit with the work of 
[7] (see also [8] and [9]) where one supposes essentially that for every point from the 
phase space one has a line of universe i.e. a line in R4. More precisely one requires 
that there exists an equivariant map from M onto some manifold of lines from R4. 

Another related notion of localisability appears in [16]. Finally, we mention the 
approach of Souriau [lo], based on the notion of evolution space, which in a certain 
sense generalises the notion of configuration space including the time on equal footing. 

From the physical point of view our result concerning the localisability of the zero 
mass systems, imagined as planes in R3, is closely related with the result of Souriau 
[lo, see footnote p 1911. The same physical idea appears also in [17] in the framework 
of a quantum analysis but is exploited differently. 

Some final comments are made in section 4. 

2. The notion of localisability in Hamiltonian formalism 

2.1. By definition, the Euclidean group E(3) is: 

E(3)={(R, a) / (&  Ry),j=(x,y),3tlx,yER3, a E R 3 1  

with the composition law: 

( R ,  a)(R’, a’) = ( R R ’ ,  a + Ra’) .  

Here 

(4 Y h 3  = X I Y l f  X2Y2 + X3Y3 (IIxllw3)2= (4 X ) d .  

Also, the special Euclidean group SE(3) is: 

SE(3) = { ( R ,  a) E E(3)ldet R = 1). 

Here det R is defined by Re,  A Re, A Re, = (det R ) e ,  A e2 A e, where e , ,  e , ,  e, is the 
canonical basis in R3. 

2.2. 

Dejnition 1 .  Let ( M ,  a) a symplectic manifold on which the group SE(3) acts sym- 
plectically, and let Q be a SE(3)-homogeneous connected manifold. We say that the 
system ( M ,  a) is localisable on the configuration space Q if there exists an SE(3) 
morphism cp: M +  T*(Q), where on T*(Q) one considers the natural lifted action of 
SE(3) (see [4, p 2831). Two configuration spaces Q, and Q2 are considered identical 
if they are SE(3) diffeomorphic. 

Remarks. (i) This definition is very natural: if Q is a configuration space, then the 
usual prescription for the canonical formalism is to take as phase space the cotangent 
bundle T*(Q) .  Definition 1 is more general in the sense that it admits a system with 
internal structure. 
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(ii) If we want to consider the spatial inversion, then we must substitute in this 
definition E(3) instead otSE(3) .  

(iii) Suppose Q and Q are t y o  configuration spaces such that Q covers 6 i.e. there 
exists a SE(3) morphism I) : Q + Q. Then we have a natural SE(3) morphism 4: T*( Q )  + 

T " ( 6 ) .  It follows that if the system ( M ,  R) is localisable on Q, then itjs also localisable 
on 6:  if c p :  M + T*( Q) is a SE(3) morphism, then 4 o c p  : M + T*( Q) is also a SE(3) 
morphism. 

Dejnition 2. Let ( M ,  a) be a system localised on Q, and let 7~ : T*( Q) + Q be the 
canonical projection. Then the Q-valued observable X = T O  cp is called the position 
(or configuration) of the system. 

If ( M ,  R) is a symplectic manifold and H E 9 ( M )  we denote by XH the Hamiltonian 
vector field associated with H; by definition: 

iu, R = dH. 
In the canonical formalism, the evolutions are integral curves of X H .  

Definition 3. Let ( M i ,  Ri),  i = 1 , 2  be two symplectic manifolds and cp : MI -$ M2 a 
smooth map. Let h E 9 ( M 2 )  and x , :R+  MI, an integral curve of Xh*cp. If x2=  pox, 
is an integral curve for X , ,  for all curves xl, then we say that the two symplectic 
structures are h-compatible. 

Dejnition 4. Let ( M i ,  ai), i = 1 , 2  be two symplectic manifolds and cp :MI + M2 a 
smooth map. If the two symplectic structures are h-compatible for any h E 9 ( M 2 ) ,  
then we say that cp is natural. 

Dejnition 5. Let ( M ,  a) be a symplectic manifold such that the corresponding system 
is localisable on the manifold Q. We say that the system is strictly localisable if the 
map cp : M + T*( Q) from definition 1 is natural. 

Definition 6. Let G be a Lie group such that S E ( 3 ) c  G. An elementary relativistic 
system for G is a triplet ( M ,  a, Q )  where ( M ,  R)  is a symplectic homogeneous manifold 
for G, Q is a SE(3) homogeneous and connected manifolds and the corresponding 
system is strictly localisable on Q. 

In the following we give a simple criterion to decide if a system associated with a 
symplectic manifold (My 0) is localisable on the manifold Q. 

Proposition. Let MI and M2 be two G-spaces and Mi = U,EA, ai, ( i  = 1 , 2 )  be the 
decomposition of Mi into G-orbits. Let ai, = G/Hi, (Hi, c G are closed subgroups). 
Suppose that cp : M ,  -$ M2 is a G-morphism. Then for any a E A , ,  there exists p E A2 
such that HI, is included, up to conjugacy, in H,,, i.e. there exists g g  G such that 
gH1,g-I = H 1 p .  

The proof is trivial. We will consider the case G = SE(3), M ,  = M (the symplectic 
manifold) and M2 = T*( Q ) .  

2.3. From section 2.2 it follows that we must first find all SE(3) orbits from T * ( Q )  
for all SE(3) homogeneous connected manifolds Q. We denote by Lie G, the Lie 
algebra of the Lie group G. Then we have the following proposition. 
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Proposition 1 .  Let Q =  SE(3)IK ( K  c SE(3) is a closed subgroup). Then, the SE(3) 
orbits from T * ( Q )  are of the type SE(3)/G,,,,,, where A E (Lie SE(3)/Lie K ) *  and 

Lie G( , , , )={ t~Lie  KIA([ ( ,  77])=O,V77~Lie K } .  

ProoJ: We identify T*(SE(3)/K), =(Lie SE(3)/Lie K ) * -  (Lie SE(3))* (the last 
inclusion is non-canonical). Let ( K ,  A )  E T*(SE(3)/K)K. Then we have 

={[€Lie K / A ( A d , , , ~ _ , g ) ~ ) = A ( 7 7 ) , V ~ E L i e  K )  
={[€Lie Klh(ad( t )q)=O,VqELie  K } .  

Lie G ( , , ) = { t ~ L i e  KIAd,,,,A = A }  

To do practical computations it is convenient to identify, as in [18], Lie SE(3) = 
A2R3 + R3 with the Lie bracket: 

[ ( % X I ,  (P,Y)I =([a, PI, Amy -A,x). 

Ac,..x=CC(u, x)Iw3-(CL, x)rw3u 

Here A, E End (R’) is defined by: 

and linearity. 

Proposition 2. Let (a, x)  E Lie SE(3). Then: 

Then we have the following. 

Lie G(K,(a,x)) = { (p ,  y )  E Lie KI[ a, P ]  - x A y = 0, Apx = 0). 

Proof. We identify (Lie SE(3))” = Lie SE(3) with the scalar product in A2R3 +R3 
induced by the scalar product in R3. Then the result follows by a simple computation 
from proposition 1, and the expression of the Lie bracket given above. 

Finally, we apply this proposition for all SE(3)-homogeneous connected manifolds 
Q = SE(3)/K. Because of remark (iii) above, we have to consider only the set of 
‘maximal’ SE(3) manifolds i.e. a set % of SE(3) manifolds such that any SE(3) 
manifold is covered by a SE(3) manifold from V. Such a list of manifolds V can be 
determined by Lie algebraic methods (see e.g. [ 191). They correspond to the following 
subgroups K :  

Case (1) {(1,5e3)/5E RI. 

Case (2,) { ( W e , ,  cp), PWJlcp  E LO, 2.rr)) P E R  

(here R( v, cp) is the rotation of angle cp around v E S’). 
Case(3) 
Case (4) 
Case ( 5 )  

Case (6 , )  
Case (7) 

Case (8) ((1, 41. 
Case (9) {O,O)I .  

( ( R ( e 3 ,  CP), 5e3)lPE[09 2T), LER). 

{(n ,  a)la3 = 0). 

{ ( R ,  O)IR E S0(3)}. 
{ ( W e , ,  c p ) ,  a>lcp E W, 2 ~ 1 ,  a3 = pep) 
( ( R ( e 3 ,  rp), a)lcp E LO, 27r)I. 

P E R .  

Case (10) SE(3). 

of % (and of the corresponding groups K ) .  
We will use systematically in the following this system of indexation of the elements 

By a direct application of proposition 2 we get proposition 3. 
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Proposition 3. The SE(3) orbits from T * ( S E ( 3 ) / K )  are of the type S E ( 3 ) / N ,  where 
N can be: 

Case (11, (21, (4) { ( t o ) }  and K 
Case ( 3 )  ((1, O ) } ,  { ( 1 , & 3 ) 1 5  E R> and K 
Case ( 5 )  ( (R(e3,cpL 0)lP E LO, 2.ir)) and K 
Case ( 6 , )  and K 
Case (7) ((1, a ) )  and K 

((1, a ) l 4 = 0 } ,  { ( R ( e , ,  CP), cplue3)lP E [o, 257)) 

Case (8)-(10) K. 

cp : M + T*( Q )  in many cases. 

2.4. We want to characterise here more conveniently the condition of strict localisabil- 
ity. We have the following slight generalisation of the Jacobi theorem [ 4 ,  p 1941. 

Proposition. Let ( M i ,  Qi) ( i  = 1,2) two symplectic manifolds and cp : M ,  + M 2  a smooth 
map. Then cp is natural iff for any f, g E 9 ( M , ) :  

This proposition will enable us to rule out the existence of a SE(3) morphism 

{ f o c p ,  g o c p } h 4 ,  = {f, g}MZOcp. 

Here { ,}Mr is the Poisson bracket on Mi.  

The proof is fairly well known and elementary, so we omit it. 

Remark (i) Taking into account this proposition, the definition of localisability given 
here becomes a generalisation of a similar definition from a preceding paper [ l l ] .  

(ii) Suppose that the manifold Q covers the manifold 6 and that the system ( M ,  Q) 
is strictly localisable on 6. Because the map 6 : T*( Q )  + T*( 6)  constructed in remark 
(iii) from section 2.2 is symplectic, the system ( M ,  a )  is localised on Q also. Combined 
with remark (iii) from section 2.2 this enables us to consider first only the configuration 
spaces indicated at 3 and then, in case of an affirmative answer, to classify the manifolds 
which can be covered by Q. 

2.5. To verify the condition of strict localisability (2.1) we need some convenient 
realisation for some S E ( 3 )  homogeneous spaces Q, and for T*(Q) (see the list before 
proposition 3). 

Case (2,) S E ( 3 ) / { ( R ( e 3 ,  cp), 0)) = S 2  x R3 with the action: 

( R ,  a ) ( v ,  4) = ( R v ,  R q + a ) .  

(P, u)(.,qLf= - - f ( v +  SCL +a($*), 4 + S U ) / , = O  

( ( P ,  U), (CL’, 0 ’ ) )  = (CL, P ’ ) R 3 +  (U, U’)R3 

We identify q , , q l ( Q )  = { (p ,  U) E R3 x R31(p, ~ ) ~ 3  = 0) by: 

d 
ds  

for any f c  9 ( S 2  x R3). Then we identify TTU,,,(Q) = qY,,,(Q) with the bilinear form: 

which is non-degenerate as can easily be shown. 
Then the lifted action of S E ( 3 )  is: 

+R,a(V ,4 ,P ,P)=(Rv ,  R 4 + a ,  RP, RP). 
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Case ( 3 )  S E ( 3 ) / { ( R ( e 3 ,  cp), l e 3 ) } = { ( v ,  q ) E  S 2 x R 3 1 ( v ,  q ) d = O } =  Qo with the action 

( R ,  a ) ( v ,  4 )  = (Rv,  Rq+P' , ,a ) .  

Here P,, is the orthogonal projection on the linear subspace generated by v, and 

We identify then 
P:=l-P, .  

~ v , , ( ~ o ) = { ( p ,  ~ ) E R ~ x R ~ I ( ~ ,  v ) R 3 = ~ ,  (v, 4 R 3 + ( p ,  4 ) w 3 = ~ )  

Case ( 5 )  S E ( 3 ) / ( R ,  0) =R3 with the action: 

( R ,  414 = R4 + a. 

We identify T,(R3) = R3 by: 

V f €  9(R3) .  
d 
ds ~ , f = - f ( 4 + s v ) l s = o  

Then T*(R3) = R3 x R3 as usual with the lifted action 

( R ,  a ) ( %  PI = (R4 + a, RP). 

Case ( 6 0 )  SE(3) /{ (R(e3 ,  cp), a)la3 = 0) = S 2  x R with the action: 

(R ,  axv,  4 )  = (Rv,  q + ( a ,  Rv)). 

We identify T( , , , ) (S2  x R) = { (p ,  U )  E R3 x RI(p ,  ~ ) ~ 3  = 0) by 
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Case ( 7 )  S E ( 3 ) / { ( R ( e 3 ,  gc), a ) } -  S 2  with the action: 

( R ,  a )  v = Rv.  

We identify T’(S2) * {p E R31(p, ~ ) ~ 3  = 0) by 

Vf E 9 ( s 2 ) .  d 
ds  

p”f =- f ( v + s p  x v+u(s’)) l ,=o 

T * ( s ~ ) ~ { ( ~ , ~ ) E s ~ X R ~ ~ ( ~ ,  v ) R 3 = ~ }  

4R,o(v, c c )  = ( R v ,  R P ) .  

Then we have 

with the lifted action 

2.6. We turn now to the calculation of the Poisson bracket in the cases studied in 
section 2.5.  

Case ( 5 )  The following expression is well known 

or, equivalently, and more conveniently for our purpose, 

{si, qj) = O  
{ P ~ , P j l = O  i=m 
{qi,  P j )  = 8, 

Case (7)  In the identification for T * ( S 2 )  from section 2.5 we identify also 

Tv,p( T * ( S 2 ) )  = { ( a ,  b )  E R3 x R3/(a,  ~ ) ~ 3  = 0, (v, b),3+ (a, , ~ ) ~ 3  = 0) 

by 

d 
(a ,  b),”,,,f = d , f ( v + s a + u ( s 2 ) ,  p + s b + 4 s 2 ) ) l s = o  

and denote for simplicity 

Then the Poisson bracket is: 

Prooj In the identifications above, the canonical two form on T * ( S 2 )  is: 

R , , ( ( a l ,  h) ,  ( (12,  b2)) = ( a ,  , b 2 ) ~ 3 -  ( (12,  b1)R3. 

Formula (2.6) is now a result of a simple computation using the definition of the 
Poisson bracket: {f, g ) M  = -X,g. 
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Case (2,) The Poisson structure is determined by (2.3)-(2.5), (2.7)-(2.9) and: 

{qi, vj) 0 (2.10) 

{Pi, Pj)=O 

This can be inferred using the results above. 

(2.11) 

(2.12) 

(2.13) 

Case (3 )  We will need only (2.7)-(2.9) which are also valid here. 

Case (60) The Poisson structure is determined by (2.7)-(2.9) and 

(4, PI = 1 (2.14) 

(4, vi> = 0 (2.15) 

(4, Pi) = 0 i = l , .  (2.16) 

{P, vi1 = 0 (2.17) 

{P, Pil=O (2.18) 

2.7. To exploit the condition of G-morphism for the map cp, we will need a simple 
observation. 

I f f :  R3 + R3 is smooth and verifies 

f (k )  = Rf(x) V R  E SO(3) 

we say that f is rotational covariant. It is easy to prove that in this case , j i s  of the form: 

f ( x )  = ~ f ( I I x I 1 2 ) R 3  

where f :  R, U ( 0 )  + R is smooth. 
By analogy, i f f :  R3 x R3 + R3 is smooth and verifies: 

f (k ,  RY) = Rf(x, Y )  

we also call it rotational covariant. In this case, f is of the form 

f (x, y )  = xA + y B  + x x yC (2.19) 

where A, B and C are smooth functions of ~ ~ x ~ ~ & ,  Ilyll& and ( ~ , y ) ~ 3 .  Indeed, for 
x x y # 0, the vectors x, y and x x y are linear independent so we can write: 

f =  xAl + y B ,  + x x yC, 

with A , ,  B ,  , C, : R3 x R3 + R smooth and rotational invariant i.e. A,(Rx, Ry)  = A,(x, y ) ,  
etc. 
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Now it is evident that A , ,  B ,  and C1 are constant on the SO(3) orbits in R3 x R3 
under the natural action. But it is easy to prove that these orbits are indexed by the 
invariants llxll&, Ilyll& and (x, ~ ) ~ 3 .  So, a formula of type (2.19) follows for x x y # 0. 
Because f is smooth, this formula is valid everywhere. 

3. Localisability for Poincarh invariant systems 

By definition, the PoincarC group is 

B = { ( L ,  a ) l L ~ E n d ( R ~ ) ,  U E R ~ , ( L X ,  L y ) R 4 = ( x , y ) R 4 , V x , y )  

with the composition law 

( L , ,  a J ( L 2 ,  a z ) = ( L , L 2 ,  a1+L,a2).  

Here (x ,  
group 

= xoy, - (x, ~ ) ~ 3 .  We consider here only the proper orthocronous PoincarC 

B $ = { ( L ,  a)ldet L > O , ( e , ,  Leo)R.>O}. 

Here, e,, e , ,  e2,  e, is the canonical basis in R4 verifying: 
1 i = j = O  

( e , ,  ej)R4=gg. = -1 i =J = 1,2,3 
'I [ o  in other cases 

and det L is defined by: 

Le, A Le, A Le2 A Le, = (det L )  e, A e,  A e,  A e, ,  

3.1. As in [18] we identify (Lie PC)*- A 'R4+R4 with the coadjoint action: 

Ad,,(T, P )  = (LT+ LP A a, L P ) .  (3.1) 
Then, the homogeneous symplectic manifolds are coadjoint orbits as follows [ 101, 

[18]; see also [20]). 

(1) M:,s={(r, P)IIIPIIk4= m2 , Ilr A P/1$= m2s2 ,  sign P,= 7) 

m E R+ , s E R, u { 0} ,  7 = * 1, 

(2) M :  = {(r, P)IIlPll&=O, sign Po= 7, *(r A P )  = -sP} 

(3) i?;={(r, P ) I / / P / / & = o ,  sign P,= 7, IlrA pl l ;4=p2}.  

(4) M,,,={(r, P ) I I I P I I & =  -m2 ,  Ilr A P I / & =  m 2 p 2 }  

(5) i?;,s={(r, P ) I I I P ~ ~ & = - ~ ~  , Ilr A P I / & =  -m s , sign(*(r A P)),= -7) 

s E R , v = * l .  

m,pER+ 
2 2  

m E R+, s E R + u  {0 } ,  7 = kl .  

( 6 )  A&,,,,= {(r, o)lllr~p= fr  A r = A2eo A e ,  A e2 A e3} A, ,A2ER 

(7) kf;,,,={(r, P ) I I I P I I ~ ~ = - - ~ ~ , ~ ~ P = O }  mER+. 

by writing r uniquely in the form: 
Here IlPI12= P i -  llPll&. It is convenient to revert to three-dimensional notation, 

r = eo A K + ( * ( e o  A J ) )  
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where J and K are three-dimensional vectors. Then the action (3.1),  restricted to 
SE(3) ,  is: 

Q ~ , ~ ( J ,  K, P, H ) = ( R J + R P x a ,  RK+Ha,  RP, H ) .  (3.2) 

Here H=P, .  

3.2. 

Proposition. The possible configuration spaces Q E % for the Poincark invariant systems 
listed in section 3.1 are among the following: 

( I )  for M:,,: iw3 

(2) for M?,,,(sER+), M y  and 6:: R3, S2, S’xR,  S 2 x R 3  and Qo 

(3)  for Mm,p, fiz,s and ML,,: S2  and Qo 
(4) for GAlrh2: s2. 
ProoJ: We decompose first (Lie PI)* in SE(3) orbits. It is easy to establish that there 
are three types of orbits: 

( a )  { ( J , K ,  P, H ) I H = E ,  ilPlllw3=k,(J,P)w3=A, /IHJ+KxPIIw3=k’}EER*, 

A ER, k, k‘E R+U{O}, IAEl s kk‘. 

The stability subgroups are conjugated with (2,) for k e  R,, lhEl< kk‘ or k = 0 and 
k’ER+; with ( 5 )  for k =  k‘=O, and with ( 9 )  for kEiw,, /MI= kk‘. 

k c  R+, k’E R, U{O}, A,  A ’ E  R, IA’I s kk’. 
( b )  {(J,K,P,O)11/P/1lw’=k, llKllw3=kr, (J,P),3=A, (P,K),3=Af} 

The stability subgroups are conjugated with (3 )  for / A ’ l <  kk’ and with (1 )  for /A’I  = kk‘. 

The stability subgroups are conjugated with: (8) for SER+, / A I <  ks and with ( 7 )  for 
SER+, IA(=ks or s=O, kER, .  

Now we analyse the SE(3)-orbits content of each manifold in section 3.1 and apply 
section 2.2.  

( c ) { ( J ,  K, 0,O) I 11 J (I w3 = S, 11 K 11 w3 = k, (J ,  K )1w3 = A 1 S, k E R+ U {  0} ,  A E R+ , I A I s Sk. 

3.3. For the verification of the condition of strict localisability, it will be profitable to 
work with new coordinates in cases (1) and (3)-(5) in section 3.1.  Namely, one 
introduces the Pauli- Liubanski quadrivector: 

w = -  * T A P )  ( 

or, in three-dimensional notation, 

WO = ( J ,  P )  W = H J +  K x P. 

Then we have in the new coordinates W, K, P, H :  

(1) M;, ,={(W,K,P,  H)IH2-I(PII&=m2 , sign H = 7, A 2 -  1 )  Wl/& = -m’s2} 

(3)  n;i;={(w, K,P, H ) I H ~ = ( I P ~ ~ ~ ~ , ~ ~ ~ ~ H = ~ , A ~ - I I w I I ~ ~ = - ~ ~ }  
(4) M,,,,p 5 {( W, K, P, H ) I H 2 -  IIPII$ = - m  2 ,A2- / /Wl l&=-m2p2}  

( 5 )  fi;,, {( W, K, P, H ) I H 2  - 1) Pll&= - m 2 ,  A’ - 11 Wllk3 = m2s2, sign A = -7). 
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Here A = ( P ,  W) ,3 /H.  The action of SE(3) in these new coordinates is: 

cpR,.(W, K ,  P ,  H ) = ( R W , R K + H a ,  RP, H ) .  (3.3) 

The elementary Poisson brackets are easy to calculate, using the property of the 
momentum map 

~ 6 ,  7 E Lie 91 {&,f,> = -A*, 111 

and are not given here. 
Now, we analyse case by case the possibilities permitted by the proposition in 3.2. 

For the purpose of illustrating the method, we analyse in detail the first case i.e. 
M = Mm,o and Q = R3. For the other cases we give only the final results. We emphasise 
that the computations are long, but straightforward. 

3.4. Q=R3. 

3.4.1. The system Mz,o  is strictly localisable in R3. 

ProoJ: (i) It is easy to prove that V ( J ,  K ,  P ,  H )  E M:j,o, 3 ( R ,  a )  E SE(3) so that: 

( J , K , P ,  H)=AdE,a (O,O,ke , ,  H )  
where k =  llPllw3. Using the formula (3.2) we get: 

J =  k R e , x a  

K = H a  
P = kRe, 

so we must take a =  K / H  and R = R ( P ) .  The morphism cp, if it exists, verifies the 
following 

( a )  C P ( J , K , P ,  H)=cp(AdE,a(O,O, ke3, H ) ) = ( R ,  a ) * ~ ( O , o ,  ke3, H I *  
( b )  It is clear that c p ( O , O ,  ke, ,  H )  = ( q ( P ) , p ( P ) )  

where q , p : R 3 + R 3  are smooth. From ( a )  and ( b )  we get cp(J ,K,P,  H ) =  
( K / H + A , ( P ) ,  Az(p))  where Ai:R3+R3 are smooth ( i  = 1,2).  The condition of the 
SE(3) morphism is equivalent with the condition of rotational covariance for the 
functions A i .  So, using section 2.7, we get the most general form of p: 

P ( J ,  K ,  p, H )  = ( K / H + ~ f ( / / P / I ; 3 ) ,  pg(llpll:3). (3.4) 
This proves that the system Mm,o is localisable on R3. 
(ii) We turn now to the question of strict localisability. 
Condition (2.5) is equivalent with g = 1, and conditions (2.3) and (2.4) are verified 

identically. So, the most general solution for the problem of strict localisability is: 

c p ( J ,  K, P ,  H )  = ( K / H + ~ ! ( / / ~ / I ~ ~ ,  P ) .  

Remark. The transformation 

7-*(R3) 3(4 ,P)~(Q+Pf(I lPII: ’ ) ,P)E T*(R3) 
is canonical. In the new variables, cp, from above, becomes 

Q ( J ,  K, P,  H )  = ( K / H ,  P ) .  
So, in this case, qa is unique, up to canonical transformations on T*(Q). 
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3.4.2. The system M,,.,(s E R,) is strictly localisable in R3. 

Pro05 (i) The most general SE(3) morphism is: 

Cp(W,K,P, H ) = ( K / H + d P ,  W ) , P ( P ,  W ) )  
with q, p smooth and rotational covariant. According to section 2.7 this implies: 

p ( P ,  W )  = A(A, H ) P +  B(A,  H )  W +  C(A, H ) P x  W 
q ( p ,  w)=&A,  H ) P + & A ,  H ) w + C ( A ,  H ) P X  w 

(ii) The condition (2.4) imposes B = C = 0. Then (2.5) fixes A = 1 .  So, cp is of the 
form: 

~ ( w , K , P , H ) = ( K / H + & A ,  H ) P + & A , H ) w + ~ ( A , H ) P x  w , ~ ) .  
Finally, after a long computation (2.3) is shown to be equivalent with 

m 2 H 2 g 2 +  m 2 H 2 ( H 2 -  m 2 ) E 2 + 2 m H E -  1 = O .  

and 
[ H ( H * -  m 2 ) C +  i ] a A / a ~  = a r j / a H  - H 2 e ( l j + A a h / d A ) .  

These equations admit solutions. For B’ = 0, we must take e = q 1/[ mH ( H  + q m ) ]  and 
we can take A = 0. (This solution alredy appears in the literature [15].) But we can 
also take E = 0, and get the solutions: 

q ( W , K , P , H ) =  K / H + -  E ( W - - P  ; ) , P  ) E = * l  ( mH 
which seems to be new. 

Remark. We did not succeed in clarifying the problem of uniqueness, up to a canonical 
transformation, for cp. 

3.4.3. The system MY is localisable in R3, but is strictly localisable iff s = 0. 

Prooj (i) The most general SE(3) morphism is also given by (3.4). 
(ii) As in section 3.4.1, (2.5) fixes g = 1, but (2.3) is true iff s = 0. 

3.4.4. The system Gz is localisable but not strictly localisable in R3. 

Prooj (i) The most general form of the SE(3) morphism, cp is given by the correspond- 
ing formulae from section 3.4.2 (i). 

(ii) The condition (2.3) cannot be satisfied (see for some details [ l l ] ) .  

3.5. Q = S * X R  

3.5.1. The system M :  is localisable on S2  x R, and is strictly localisable iff s = 0. 

Prooj (i) The most general SE(3) morphism is: 

~ ( 4  K, P ,  H )  = [ E P / H ,  E ( K  P)iw3/H2+ q ( H ) ,  p ( H ) [ - K / H + P ( K  P),3/H31, p ( H ) I  
with q and p smooth, and E = i l .  

p ( H )  = EH, and then (2.14) is also satisfied. 

solution: 

(ii) Equations (2.71, (2.15) and (2.18) are satisfied automatically. (2.8) gives 

Finally (2.9) and (2.16) are satisfied iff s = 0. So, for s = 0 we have the most general 

P ( J , K , P , H ) = ( E P / H ,  & ( K , P ) i w 3 / H 2 + q ( H ) ,  E [ - K / H + P ( K , P ) R ~ / H ~ ] ,  E H )  ( 3 . 5 )  
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Remark. By the canonical transform in M:: 

( J , K , P , H ) H ( J , K - E P ~ ( H ) , P , H )  

we get rid of q ( H )  in (3.5). Then by the canonical transform in T*(S2xR); 

(U, 9, p, P ) H ( - - V ,  -4, -cc, -P) 
we can make E = 1. So, up to canonical transformations the solution is: 

cp(J, K,  P, H ) = ( P / H ,  ( K , P ) , 3 / H 2 ,  - K / H + P ( K , P ) R 3 / H 3 ,  H ) .  (3.6) 

3.5.2. The system fi,? is localisable, but not strictly localisable on S2 x R. 

Proox (i) The most general form of the SE(3) morphism cp is 

c P ( W , K , P , H ) = ( v ( P ,  W ) , q ( A , H ) + ( K ,  4p, W ) ) / H , P ( P ,  W )  
- P ( A ,  H)PZ(FJ,WV,K/ft A A ,  H I )  

where U, p, q and p are smooth, 11 ullR3 = 1, (U, p)R3 = 0 and v, p are rotational covariant. 
According to section 2.7, 

u = A ( h , H ) P + B ( A , H ) W + C ( A , H ) P x  W 

c c = A ( A , H ) P + ~ ( A , H ) W + C ( A , H ) P X  W. 

(ii) Equation (2.7) has the following solutions: 

u = E P I H  & = + l  

v = A P +  B(HW -AI')+ CPX W 

(3.7a) 

(3.7b) 

where aA/aA = 0 and 

H 2 [ p 2 (  B2 + C2) + A2]  = 1 B 2 + C 2 > 0 .  

For ( 3 . 7 ~ )  we get from (2.8) that p ( H )  = E H  as in section 5.1. But (2.9) and (2.16) 
cannot be satisfied simultaneously. For (3.7b), (2.15) cannot be fulfilled. 

3.5.3. The system MZ,s is localisable but not strictly localisable on S 2  x R. 

Proof: Similar to the proof in section 3.5.2. 

3.6. Q = S 2  

3.6.1 The system fiA,,A2 is localisable, on S2 iff I : +  I : >  0 but not strictly localisable 
on S2 .  

Proof: (i)  50 is of the form: 

dJ, K, 0,O) = (44 K), P(J, K ) )  

with v, p smooth, rotational covariant and verifying 1 1  ullR3 = 1, (v, p)R3 = 0. 
(ii) Equation (2.7) cannot be satisfied. 
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3.6.2. The system Mm,p is localisable, but not strictly localisable on S2.  

Proof: (i) cp is of the form: 

cp(W, K,  p,  H )  = (4P, W), p(P, wi 
with Y and p as in section 3.5.2. 

satisfied. 

3.6.3. The system G:,s is localisable, but not strictly localisable on S2. 

(ii) Equation (2.7) implies Y = ( E / ( H ~ + ~ * ) ~ ’ * ) P ( E  = il) but (2.8) cannot be 

Proof: Identical to the one in section 3.6.2. 

3.6.4. The system M;,.7( E R,) is localisable, but not strictly localisable on S2  

Proof: (i)  cp is of the same form as in section 3.6.2. 

get a contradiction for P = 0. 

3.6.5. The system M :  is localisable, but not strictly localisable on S2. 

Proot (i)  cp is of the form: 

(ii) Equation (2.7) implies v = A P .  But llv112= i ,  so we have IIP/I2A2= 1 and we 

c p ( J ,  K, p,  H )  = ( E P / H ,  0) E =*l ,  

(ii) Equation (2.8) cannot be fulfilled. 

3.6.6. The system 2; is localisable, but not strictly localisable on S 2 .  

Proof: (i) cp is of the same form as in section 3.6.2. 

be fulfilled. 
(ii) Equation (2.7) has the same solutions as those in section 3.5.2. and (2.8) cannot 

3.6.7. The system Mk,o is localisable, but not strictly localisable on S2. 

Proof: Identical to the one in section 3.6.5. 

3.7. Q = Q o  

3.7.1. The systems Mm,p, fi2,* and 

Proof: For H # 0, one finds out that cp is of the form: 

are not localisable on Qo. 

cp(W, K,P ,  H ) = ( v ( P ,  W ) , X ( P ,  W ) + K / H - ( K ,  Y ) Y / H ,  . .  .) 
which cannot be extended smoothly for H = 0. 

3.7.2. The system M :  is localisable, but not strictly localisable on Qo. 

Proof: (i)  cp is of the form: 

Q ( J ,  K,  p,  H )  = ( E P / H ,  K I H  - ( K ,  P)R~P/H, 0,O) E = * l .  

(ii) Equation (2.8) cannot be satisfied. 

3.7.3. The system Gz is localisable but not strictly localisable on Qo. 
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Proof: (i) cp is of the form: 

with v, x smooth, I / V ( ( ~ ~  = 1 and (v, ~ ) ~ 3 = 0 .  
cp(W,K,P, H ) = ( v ( P ,  W),x(P,  W + P L , , w , K / H , O , O )  

(ii) Equation (2.8) cannot be satisfied. 

3.8. Q = S Z x R 3  

3.8.1. The system M?,,,(s E R,) is localisable, but not strictly localisable on S 2  x R3. 

Proof: (i)  cp is of the form: 

cp( w, K, P, H )  = ( v ( P ,  w, x(P, w+ ( P X ) / H ,  P(P ,  W , P ( P ,  W )  
with v, x, p, p smooth and rotational covariant )I vIIR3 = 1 and (v, p ) R 3  = 0. 

(ii) From (2.7) we get v = AP and a contradiction follows as in section 6.4. 

3.8.2. The system M :  is localisable but not strictly localisable on S2xR3 

Proof: (i) cp is of the form: 

cp(4 K, P, H )  = ( E P / H ,  x(Il~11i3)P+P;EP,H~K/H, 0, PP(llPlli3) 

with x, p smooth. 
(ii) Equation (2.8) is not satisfied. 

3.8.3. The system 6i: is localisable but not strictly localisable on S2xR3. 

Prooj It is very similar to the one in section 3.8.1. 

3.9. Collecting these results we have the following. 

Theorem. The only elementary relativistic systems for P! are (M?,,, , Cl,  R3) for s E 

R, U{O}, ( M z ,  SZ, R3), ( M z ,  0, S 2  x R) and ( M z ,  Cl, ( S 2  x R)/Z2) where the action of 
Z2 on S ~ X R  is: 

l*(v, 4 )  = (v, 4 )  i -n.(v, 4 )  = (-v, - 9 ) .  

Prooj It is not very hard to prove that S2 x R can cover only the manifold ( S 2  X R)/Z2 
obtained by the factorisation above. 

Remark. It is easy to see that ( S 2  x R3)/Z2 is the manifold of bidimensional planes in 
R3. Indeed, one fixes a plane I1 in R3, giving a vector v E S2 which is perpendicular 
on l7, and a real number q such that qv E I1; of course one must identify (v, q )  with 
(-v, - 4 ) .  It is easy to verify that the action of SE(3) from section 2.5 (6,)  is compatible 
with this interpretation. Inspecting formula (4.6) we see that v = P / H  i.e. the plane 
is perpendicular on the direction of the momentum, and q = (K, P ) R 3 / H 2 ,  i.e. the 
projection of the centre of motion vector K / H  on v. These observations allow us to 
interpret l7 as the plane wave of a photon. A similar idea was proposed (in the 
framework of quantum mechanics) in [17], but was exploited differently. What is 
remarkable is that one does not have to impose this image from outside, it emerges 



Localisability in classical mechanics 3541 

from the notion of strict localisability. Moreover, this is in accordance, in some sense, 
with an analysis of the same type made by Souriau [lo] and based on the notion of 
evolution space. We also note that (J ,  K,  P, H )  and ( J ' ,  K ' ,  P', H )  have the same 
configuration iff P = +P' and ( K  - K ' ,  P )  = 0. If K /  H is assimilated with the centre 
of mass of the photon, this would correspond to a translation of the plane along itself 
which, obviously, does not change the physical situation. The elements of S 2  x R can 
be interpreted as oriented planes in R3. 

3.10. One can include inversions also. We do not give the full analysis, but note only 
that the system Mm,,(s ER+), regarded as a PT homogeneous manifold, is strictly 
localisable (with respect to E(3)) iff the functions fi and from section 3.2 are odd, 
respectively even, in A because W is a pseudovector. 

4. Final remarks 

We have given a reasonable definition for the notion of localisability in classical 
mechanics in the framework of the Hamiltonian formalism. Then we have analysed 
from this point of view the homogeneous symplectic manifolds for the PoincarC group. 
The results have been interesting from two points of view. First, they could explain 
why some hypothetical particles, predicted by PoincarC invariance only, e.g. the 
tachyons (i.e. fim,p and f i z , s )  or the particles of zero mass and infinite spin (i.e. A?:), 
do not appear in Nature: they are not strictly localisable. Secondly, we get a new 
configuration space which could perhaps explain the properties of the classical photon. 
For this it is necessary to find a reasonable physical interpretation for this new 
configuration space; a tentative interpretation was made in section 3. 

It would be interesting to clarify some connected problems. Firstly, to analyse in 
the same spirit the notion of evolution space of Souriau. In particular, a 'good' definition 
for this notion must be such that a particle has an evolution space iff it is strictly 
localisable. Secondly, of the technical level, it would be desirable to exploit the 
condition of strict localisability in a less computational way, if possible. It would not 
be surprising if these two problems can be solved simultaneously. 

Finally, the same analysis can be done in quantum mechanics, generalising the 
work of Wightman. Partial results in this direction have been obtained in [21]. These 
results corroborate the conclusions of this paper, as regards the localisability of the 
photon. 
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